Proton beam velocity distributions in an interplanetary coronal mass ejection
نویسندگان
چکیده
منابع مشابه
MAVEN observations of the response of Mars to an interplanetary coronal mass ejection.
Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and s...
متن کاملCoronal mass ejection: key issues
Coronal Mass Ejections (CMEs) have been addressed by a particularly active research community in recent years. With the advent of the International Heliophysical Year and the new STEREO and Hinode missions, in addition to the on-going SOHO mission, CME research has taken centre stage in a renewed international effort. This review aims to touch on some key observational areas, and their interpre...
متن کاملThe Composition of Interplanetary Coronal Mass Ejections
Interplanetary coronal mass ejection (ICME) associated plasma can exhibit signatures in elemental, ionic and isotopic composition. These signatures occur in less than 50% of all ICMEs, but are very indicative of ICME plasma. We review these compositional anomalies and briefly discuss a physical scenario that could be responsible for these anoma-
متن کاملInterplanetary coronal mass ejection and ambient interplanetary magnetic field correlations during the Sun-Earth connection events of October–November 2003
[1] Magnetic field observations made during 28 October to 1 November 2003, which included two fast interplanetary coronal mass ejections (ICMEs), allow a study of correlation lengths of magnetic field parameters for two types of interplanetary (IP) structures: ICMEs and ambient solar wind. Further, they permit the extension of such investigations to the magnetosheath and to a distance along the...
متن کاملHeating of Heavy Ions by Interplanetary Coronal Mass Ejection (ICME) Driven Collisionless Shocks
Shock heating and particle acceleration processes are some of the most fundamental physical phenomena of plasma physics with countless applications in laboratory physics, space physics, and astrophysics. This study is motivated by previous observations of non-thermal heating of heavy ions in astrophysical shocks (Korreck et al. 2004). Here, we focus on shocks driven by Interplanetary Coronal Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Geophysicae
سال: 2009
ISSN: 1432-0576
DOI: 10.5194/angeo-27-869-2009